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ABSTRACT 

It is shown that the set of points for which a monotone mapping T: X -~ X* 
from a separable Banach space into its dual is not single-valued has no 
interior; if dim X < ~ and int D(T) ~ q~ then the set has Lebesgue measure 
zero. Moreover, for accretive mappings T : X  --~ X from a separable Banach 
space into itself, the dimension of the set of points whose images contain balls 
of codimension not larger than k does not exceed k. Applications to convexity 
are given. 

A well-known theorem due to S. Mazur [4], [2, V. 9.8] says that the boundary 

of a closed convex body in a separable Banach space is smooth (i.e. has a tangent 

plane) at a dense set of points. In finite dimensional spaces [1], and to a certain 

extent in Hilbert space [6], more can be said in the sense that if  the boundary 

points are classified according to smoothness then their relative abundance 

increases with smoothness. Equivalent statements can be given in terms of 

differentiability properties of convex functions. An inspection of the proofs 

reveals that underlying these geometrical facts there are basic theorems concerning 

the degree of multivaluedness of monotone operators. To present these theorems 

is the purpose of this article; the proofs are modelled after those for the corres- 

ponding properties of convex sets [2, V.9.8], [6, Th. 2.1]. 

Let us briefly go over some standard definitions. A set M in the Cartesian 

product X x X* of a real Banach space with its dual is said to be monotone if 

(x~* - x*, x, - x2) > O, V(x,,x*), (x2,x*)eM 

((x*, x )  denotes the value of the linear functional x* at x). A maximal monotone 
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set is one not properly contained in another monotone set. A set valued mapping 

T:  X ~ 2 x" is called a monotone operator if its graph 

((x*, x* Tx} 

is a monotone set in X x X*; the operator is said to be maximal monotone if its 

graph is maximal monotone. For  a given T:X-~  2 x* the operator T -1 is defined 

as the mapping from X* into X having as its graph the set {(x, x*) I (x*, x) e graph 

of  T}. It is clear that T and T -  I are simultaneously monotone or maximal 

monotone. In the sequel we shall view set-valued mappings as multivalued 

mappings and use the notation T:  X ~ X* rather than T: X ~ 2 x* . 

THEOREM 1. The set of points where a monotone operator T: X-~  X* from 

a separable Banach space into its dual is not single valued has an empty interior. 

I f  the domain of T has a nonempty interior the set is an F~-set; if in addition X 

is a finite dimensional the set has a Lebesgue measure zero. 

PROOF. It is clear that the theorem holds for T whenever it holds for any of  

its extensions. Hence, since any monotone mapping admits a maximal extension, 

it may be assumed without loss of  generality that T is maximal monotone. Let 

D(T) denote its domain of  definition. We may further assume that int D(T) ~ q~, 

for otherwise there is nothing to prove. Under such conditions a theorem of  

R. T. Rockafellar [5, Th. 1] says that int D(T) is an open convex set whose closure 

contains D(T), and at any of  whose points T is locally bounded. In particular, 

the image Tx of  any x in int D(T) is a bounded set in X*; by the maximality it is 

also closed and convex. 

The theorem will be proved as soon as it is shown that 

Z = {x ~ int D(T) I Tx not a singleton} 

contains no nonempty open set. Let us consider the real valued function 

k(x, u) = sup (x*, u), x ~ D(T), u ~ X. 
X* ~ T..'r 

For  fixed x, k(x,u) is a lower semicontinuous convex function of  u: the support 

function of the convex set Tx. I f  x e int D(T), it is everywhere finite. On the other 

hand, for fixed u, it is an upper semicontinuous function of  x on intD(T). To see 

this, pick, for any x ~ int D(T), a sequence xn converging to x, and in each Txn an 

* in such a fashion that (x*, u ) - ~  lim supt .  x k(y, u). By the local boundedness Xn 

of  T at x, {x~ }1 is a bounded set, and the conditional weak-star compactness 
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of bounded sets in X* and the separability of  X guarantee the existence of a 

* converging weakly to a point x* in X*. By the maximality of T, subsequence xnk 

x* ~ Tx. Then, 

k(x,u)  > (x* ,u)  = lim {x*~,u) = lira (x* ,u )  = I i m  supk(y,u) ,  

and the upper semicontinuity of k(x, u) with regard to x is established. 

The important fact about k(x,u)  is that along any line parallel to u it is a 

monotone function of x. Let us look at this more closely. I f  x c int  D(T) the line 

{x + tu}_~<t< +~ intersects int D(T) in an open segment. Let s and t be two real 

numbers such that s < t and x + su, x + tu ~ int D(T). Then if x* E T(x  + su), 

x t* ~ T(x  + tu), 

<x*t,u) - ( x * , u )  = (t - s ) - l ( x  * - x~*, (x + tu) - (x + su)) >= O, 

by the monotonicity of T. Hence 

k ( x + t u , u ) =  sup (x* ,u)>= inf 
x*, ~ T(x + t u) x~r T(x + t u) 

= - k(x + tu, - u) > sup 

( x * , , u ) = -  sup ( x* , -u>  
x* t r T(x+tu) 

(x*, u) = k(x + su, u), 
x , * e T ( x + s u )  

which makes it plain that k(x + tu, u) is a nondecreasing function of t, and that 

0 < k(x + tu, u) + k(x + tu, - u )  < k(x + tu, u) - k(x + su, u). 

Letting s ~' t it follows that 

(1) 0 < k(x + tu, u) + k(x + tu, - u) < k(x + tu, u) - lim k(x + su, u). 
s'~t 

The quantity 

k(x,u)  + k(x, - u) = sup ( x * , u ) -  inf ( x * , u )  
X*~ TX ~* ~ Tx  

is the supremum of the lengths of the projections on u of all the differences of 

points in Tx. Thus, if {un}~' c X is a sequence such that (x*, u,)  = 0 for all n 

implies x* = 0, then Tx  is not a singleton i fffor  at least one n ( T x ,  u , )  is not a 

a singleton, that is, iff k(x, u,) + k(x, - un) > 0. Letting 

Zn = {x ~ int D(T) I k(x, u,) + k(x, - u,) > 0}, 

we have 

(2) z - -  
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Since by (1) the points of Zn on the line {x + tUn}-o~<t<+| are associated with 

jumps of the nondecreasing function of t, k(x + tun,Un),Zn intersects any line 

parallel to un in at most a countable number of points. In particular, Zn has an 

empty interior for every n. In the finite dimensional case, Fubini's theorem allows 

one to conclude from this that the Zn's are all sets of Lebesgue measure zero, and 

hence that Z itself is of measure zero. 

Clearly, 

(3) 

where 

Z n ~-- ~J Zn, m 
m = l  

Zn,,, = {xeintD(T) l k(x,u~) + k ( x , -  u,) >= m-'} .  

Th~ uppzr se.nicoatinuity of k(x, u) + k(x, - u) with regard to the first argument 

indicates that all the Zn,m'S are closed sets. Substituting (3) in (2), 

n , m  = I 

Now, if Z had a nonempty interior then it would contain a closed ball B of non- 

vanishing radius, and for this ball 

o0 

B= U (zn,.nn). 

But, since B is of the second Baire category and the (Zn.,, ~ B)'s are closed, one 

of these sets, and hence a Zn, would have to have a nonempty interior, which 

is impossible. Thus Z has no interior, and is an F,-set. Q.E.D. 

REMARK. As the countable union of F~-sets is again of the same type it follows 

that if {Tff }1 is e sequence of monotone operators simultaneously defined in an 

open set O, then the set of points where all the Tn's are simultaneously single- 

valued is dense in O. Aiaother point to be observed is that the restriction of T to 

the set of points where T is single-valued is demicontinuous, and in consequence 

that T is demicontinuous in a dense set, if int 9(T)  is not empty. 

To a monotone operator T: X ~ X*, a closed linear subspace L, andpoint Xo 

in X may be associated the mapping TL: L ~ X * / L J ~  L* (L l is the annihilator 

of L) defined by TLx = T(x + Xo), where :~* denotes the coset in X*/L J- containing 

x*. This is a monotone operator and Theorem 1 applied to it yields: 



162 E.H. ZARANTONELLO Israel I. Math., 

COROLLARY l. Let T: X ~ X* be a monotone operator and M a separable 

affine manifold in X. Then the set of points in M where Tx is not ortho#onal to 

M has no interior in M; i f M  isfinite dimensional the set has Lebes#ue measure 

zero. 

In the corollary above, the orthogonality is to be understood as meaning that 

the difference of any two points in Tx annihilates the difference of any two points 

in M. I fM is identified with the manifold spanned by Tx one obtains the following 

interesting consequence: 

COROLLARY 2. I f  T: X - ,  X* is a monotone operator and both X and X* are 

separable then, for #iven x in X and any y in Tx with the exception of points 

in a set with empty interior, Tx and T - l y  are orthogonal convex sets. 

When applied to the subgradient mapping x ~ DpK(x) of the Minkowski 

functional of a closed convex set K Theorem 1 leads at once to the theorem of 

Mazur mentioned at the beginning of this article. The mapping is monotone and, 

by the Hahn-Banach Theorem, everywhere defined whenever the origin is an 

interior point [2, V.9]. 

A sort of dual of Mazur's result concerning the faces of a convex set can be 

described as follows: If K is a closed convex set in a Banach space X and u* is a 

vector in the dual space X*, we call the closed convex set 

FKu* = {x I x e K ,  (u*,x) = sup ( u * , y ) }  
y 6 K  

the face of K perpendicular to u*, and we say that u* is a (outer) normal to K at 

points of this face. Naturally the face may be empty; when it reduces to a point it 

is called an exposed point, The mapping Fx: X* ~ X  assigning to each u*EX* 

the corresponding face Fru*--called the support mapping of K--is a monotone 

operator defined over the set of normals to K. If X* is separable, Fx satisfies the 

hypotheses of Theorem 1 and the following result may be derived: 

COROLLARY 3. The set of normals to a closed convex set K in a Banach space 

X with a separable dual X* at more than one point has an empty interior; in 

finite dimensions, the set has measure zero. I f  X is reflexive and K bounded, the 

normals at exposed points are dense in X*. 

Corollaries 1 and 2 also have known geometrical meanings. It is interesting to 

look at Theorem 1 in the context of the so called Fredholm Alternative. This 

proposition, valid for a certain type of linear operators, says, among other things, 

that if the equation 
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(4) Sx  = y 

is solvable for all y 's  in space, it is uniquely solvable, and conversely. Naturally, 

since we are dealing with nonlinear operators, the space here can be replaced by 

any open set. Now, if S is identified with the inverse of a monotone mapping, 

Theorem 1 can be read as saying that if (4) is solvable for all y 's  in an open set 

then it is uniquely solvable for a dense set therein. The resemblance is more 

striking still in finite dimensions where solvability in an open set implies uniqueness 

almost everywhere. A further analysis shows that Corollaries 1 and 2 have bearing 

on other aspects of th~ Fredholm alternative. 

THEOREM 2. Let S: X ~ Y be a Lipschitz mapping f rom a separable Banach 

space X into a Banach space Y. Then the set WCk)= { y � 9  YI S - I Y  contains a 

relatively open ball of codimension less than or equal to k}t is contained in the 

union of countably many compact sets of finite k-Hausdorf f  measurer* and as 

such its dimension does not exceed k. 

The proof is based on the following "fishing net"  lemma: 

LEMMA 1. Let Z be a countable set linear over the rationals and dense in a 

Banach space X .  Then any closed aJ~ne manifold 34 ~k) c X of codimension k 

intersects the union qf all k-dimensional manifolds through any k + 1 po;nts 

in Z in a dense set in M (k). 

PROOF. Let M (k) = Xo + V (k), where V (k) is a closed subspace of codimension k, 

and let U (k) be a k-dimensional subspace spanned by k points in Z such that 

V (k) (3 U (k) = {0}. The existence of such a U (k) is a consequence of Z being dense in 

X. With this choice, (U (k), V (k)) is a couple of complementary closed subspaces in 

X,  and the projection P on V (k) along U (k) is everywhere defined, linear, and 

continuous. Now, for any x �9 X ,  

P(x  - Xo) �9 V (k), e ( x  - Xo) - (x - Xo) �9 U (k), 

and so 
Px  + (x o - Pxo) = P(x - Xo) + x o �9 (x o + V k)) N (X + U (k)) 

= M (k) ~ (x + u(k)). 

Hence, if z �9 Z, 

t That is, contains the intersection of an open ball with a closed atfine manifold of codi- 
mension k through its center. 

*tFor the definition and properties of Hausdorff measures we refer the reader to [3, Ch. 
VIIl. 
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Pz + (Xo - Pxo) ~ M (~) r3 N (k), 

where N (k) = z + U (k) is a k-dimensional manifold spanned by k + 1 points in Z. 

Therefore PZ + (Xo - Pxo) is part of the set in question, and a dense part indeed, 

because the range of the continuous mapping x ~ Px + ( x o -  Pxo) is M (k) and 

Z is dense in X. Thus the lemma is proved. 

PROOF OF THEOREM 2. We may assum~ that the domain of definition o~ S is 

closed, for if not, S could be extended by continuity to its closure. By the lemma 

above, there is a countable family of k-dimensional manifolds {N (k)} such that if 

y E W Ck) then S-  ly intersects their union uN(k); in consequence, W (k) c S(uN(k)).  

Each N (k~, being a k-dimensional affine manifold, can be decomposed into a 

countable number of compact sets with finite k-Hausdorff measure, and as there 

are only denumerable many N(k)'s, the same is true for u N  (k). Therefore, W (k) 

is contained in the union of the images of these sets, which, since D(S) is closed 

and S Lipschitizian, are again compact and of finite k-Hausdorfl measure, and 

the theorem is proved. The assertion concerning the dimension follows from the 

fact that the dimension of a set with finite k-Hausdorff measure does not exceed k 

[3, Ch. VlI]. 

The hypotheses of this theorem can be relaxed a great deal. Indeed, no use has 

been made of the Banach structure of the space IT, which therefore could be taken 

as a simple metric space; moreover, a local Lipschitz character is all that the 

proof demands. It is also apparent that the balls of finite codimension could be 

replaced by more general objects. 

Theorem 2 extends naturally to accretive operators, which by their very def- 

inition are directly connected with Lipschitz mappings. Let us recall that a 

mapping T: X ~ X from a Banach space into itself is said to be accretive ff for 

every ). > 0, I + ).T is noncontractive. In Hilbert space, the notions on mono- 

tonicity and accretiveness coincide. 

THEOREM 3. Let T: X -~ X be an accretive mapping from a separable Banach 

space into itself. Then the set of x's for which Tx  contains a ball of codimension 

not larger than k is contained in the countable union of compact sets with 

finite k-Hausdorj~' measure, and its dimension does not exceed k. 

PROOF. The mapping S = (I + T)-1 is nonexpansive. Since the set 

{x ~ X] Tx  contains a ball of cod~mension < k} 

is the same as the set 
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{x ~ X l S - i x  = (I + T)x contains a ball of codimension =< k}, 

the desired result follows from the previous theorem applied to S. 

REM~K. Note that accretiveness has not been used in its full strength, and 

that only the existence of a 2 such that I + )~T is locally noncontractive was 

required. 

Now let X = X * =  H, anJ for any co3ecl coavex set K in H consider the 

mappings: 

x ~ V K x = { u I u e H , ( u , x ) =  sup (u , z ) ) ,  x ~ K ,  
z e K  

u--',F~cu = { x l x c K ,  ( u , x )  = sup (u ,z)} ,  ueH.  
z ~ K  

Vtcx is the set of all normals at x and coincides with the dual of the support cone 

of K at x. We have called it the vertex of K at x [6, Def. 2.4]; its size is a measure 

of the roughness of K at the point. As to FKu , we have seen that it is the face of K 

perpendicular to u. Both mappings are monotone and hence accretive, and can 

be expressed in terms of the projection PK, which maps any x onto the nearest 

point in K, as follows: 

V~= P~' - I, F ~ = ( I -  V l O - t -  l ,  

where I is the identity mapping. Theorem 3 applied to them leads to: 

COROLLARY 1. The set of points of a closed convex set K in a separable Hilbert 

space having a vertex containing a ball of codimension not larger than k is the 

countable un:on of compact sets oJ finite k-Hausdorff measure, and its dimension 

does not exceed k. 

COROLLARY2. The set of normals to a closed convex set K in a separable 

Hilbert space at faces containing a ball of codimension not larger than k is 

contained in the countable union of compact sets of finite k-Hausdorff measure, 

and has dimension not larger than k. 

In the finite dimensional case Corollary 1 reduces to the result of  V. L. Klee 

and R. D. Anderson [-1]. 
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